Demontrer Qu Une Suite Est Constante Sur

Dès lors qu'une suite est majorée, il existe une infinité de majorants (tous les réels supérieurs à un majorant quelconque). Suite minorée Une suite u est dite minorée s'il existe un réel m tel que pour tout entier naturel n,. Le réel m est appelé un minorant de la suite. Demontrer qu une suite est constante et. Dès lors qu'une suite est minorée, il existe une infinité de minorants (tous les réels inférieurs à un minorant quelconque). Suite bornée Une suite u est dite bornée si elle est à la fois majorée et minorée. Dans ce cas, il existe des réels M et m tels que pour tout entier naturel n,. Caractère borné [ modifier | modifier le code] u est bornée si et seulement s'il existe un réel K tel que pour tout entier naturel n, (il suffit de prendre pour K la valeur absolue de celui de M et m qui est le plus grand en valeur absolue:). Conséquence: Pour démontrer qu'une suite u est bornée, il suffit de montrer que la suite (| u n |) est majorée. La suite u définie par: pour tout entier naturel n, est majorée par 1 mais n'est pas minorée; La suite v définie par: pour tout entier naturel n, est minorée par 0 mais n'est pas majorée; La suite w définie par: pour tout entier naturel non nul n, est bornée (son plus grand terme est, c'est aussi le plus petit des majorants; elle n'a pas de plus petit terme car elle est strictement décroissante, mais le plus grand des minorants est 0, c'est aussi sa limite).

  1. Demontrer qu une suite est constante des

Demontrer Qu Une Suite Est Constante Des

Pour cela, on fixe $a, b\in A$ et on considère $\phi:[0, 1]\to A$ un chemin continu tel que $\phi(0)=a$ et $\phi(1)=b$. On pose $t=\sup\{s\in [0, 1];\ f(\phi(s))=f(a)\}$. Démontre que $t=1$. Conclure.

Remarque Pour simplifier les explications, on supposera que les suites ( u n) (u_n) étudiées ici sont définies pour tout entier naturel n n, c'est à dire à partir de u 0 u_0. Les méthodes ci-dessous se généralisent facilement aux suites commençant à u 1 u_1, u 2 u_2, etc.

785cq.vip, 2024