Exercice Équation Du Second Degré

Avancé Tweeter Partager Exercice de maths (mathématiques) "Equations: Equation du second degré" créé par anonyme avec le générateur de tests - créez votre propre test! Voir les statistiques de réussite de ce test de maths (mathématiques) Merci de vous connecter à votre compte pour sauvegarder votre résultat. Fin de l'exercice de maths (mathématiques) "Equations: Equation du second degré" Un exercice de maths gratuit pour apprendre les maths (mathématiques). Tous les exercices | Plus de cours et d'exercices de maths (mathématiques) sur le même thème: Equations

  1. Exercices équation du second degré pdf
  2. Exercice de math équation du second degré
  3. Exercice équation du second degrés
  4. Exercice équation du second degré seconde

Exercices Équation Du Second Degré Pdf

Si $a(m)\neq 0$, alors $(E_m)$ est une équation du second degré. On calcule le discriminant $\Delta_m$ qui lui aussi dépend de $m$. $$\Delta_m =b(m)^2-4a(m)c(m)$$ Ici commence l'étude dans l'étude: Il faut maintenant chercher, pour quelles valeurs de $m$, on a: $\Delta_m=0$ et étudier le signe de $\Delta_m$. Ensuite, on ouvre une discussion suivant les valeurs et le signe de $\Delta_m$ pour déterminer le nombre de solutions ou le calcul de ces solutions en fonction de $m$. 5. 2 Exemples Exercice résolu. Pour tout $m\in\R$, on considère l'équation suivante: $$ (E_m):\; (m-4)x^2-2(m-2)x+m-1=0$$ 1°) Étudier suivant les valeurs de $m$, l'existence de solutions de l'équation $(E_m)$. 2°) Calculez les solutions de l'équation $(E_m)$, lorsqu'elles existent, suivant les valeurs de $m$. Corrigé. 1°) Étude suivant les valeurs de $m$, de l'existence de solutions de l'équation $(E_m)$. $$ (E_m):\; (m-4)x^2-2(m-2)x+m-1=0$$ L'inconnue est $x$, Il n'y a aucune valeur interdite. Donc, le domaine de définition de l'équation $(E_m)$ est: $D_m=\R$.

Exercice De Math Équation Du Second Degré

a) Nature de l'équation $(E_m)$. $(E_m)$ est une équation du second degré si, et seulement si le coefficient de $x^2$ est non nul, donc si et seulement si $m-4\neq 0$; c'est-à-dire si et seulement si $m\neq 4$. b) Étude du cas particulier: $m=4$, de l'équation $(E_4)$. Pour $m=4$, l'équation $(E_4)$ est une équation du 1er degré qui s'écrit: $$(E_4):\; (4-4)x^2-2(4-2)x+4-1=0$$ Donc: $$\begin{array}{rcl} -4x+3&=&0\\ -4x &=&-3\\ x&=&\dfrac{3}{4}\\ \end{array}$$ Conclusion. Pour $m=4$, l'équation $(E_4)$ admet une seule solution réelle. $${\cal S_4}=\left\{\dfrac{3}{4} \right\}$$ c) Étude du cas général: $m\neq 4$, de l'équation $(E_m)$. Pour tout $m\neq 4$, $(E_m)$ est une équation du second degré. On calcule son discriminant $\Delta_m$ qui dépend de $m$ avec $a(m)=(m-4)$, $b(m)=-2(m-2)$ et $c(m)=m-1$. $$ \begin{array}{rcl} \Delta_m &=&b(m)^2-4a(m)c(m)\\ &=& \left[ -2(m-2)\right]^2-4(m-4)(m-1)\\ &=& 4(m-2)^2- 4(m-4)(m-1) \\ &=& 4(m^2-4m+4)-4(m^2-m-4m+4)\\ &=& 4\left[ m^2-4m+4 -m^2+5m-4 \right] \\ \color{red}{\Delta_m} & \color{red}{ =}& \color{red}{4m}\\ \end{array} $$ Étude du signe de $\Delta_m=4m$: $$\boxed{\quad\begin{array}{rcl} \Delta_m=0 &\Leftrightarrow& m=0\\ &&\textrm{Une solution réelle double;}\\ \Delta_m>0 &\Leftrightarrow& m>0\;\textrm{et}\; m\neq 4\\ && \textrm{Deux solutions réelles distinctes;}\\ \Delta_m<0 &\Leftrightarrow& m<0\\ && \textrm{Aucune solution réelle.

Exercice Équation Du Second Degrés

C'est une équation de la forme ax²+bx+c=0 (avec a non nul) Pour pouvoir résoudre une telle équation, il faut tout d'abord calculer le discriminant Δ. Pour le calculer, c'est facile, il suffit d'appliquer cette formule: Δ = b² - 4ac On le calcule. Ensuite, selon le résultat, on va pouvoir connaître le nombre de solutions qu'il y a, et les trouver s'il y en a. Si Δ < 0, rien de plus simple: il n'y a pas de solution. Si Δ = 0, il y a une seule solution à l'équation: c'est x= -b/(2a) Si Δ > 0 il y a deux solutions qui sont x1 = (-b-√Δ)/(2a) et x2= (-b+√Δ)/(2a) Désormais, il est possible pour vous de résoudre une équation du second degré. POUR L'EXERCICE: RESOUDRE LES EQUATIONS ET TROUVER X S'il y a 2 solutions, marquez comme ceci séparé d'un point-virgule: 1;2 ( toujours la solution la plus petite en premier). Toutes les équations ne sont pas sous la forme générale d'une équation du second degré; il faudra éventuellement faire quelques opérations élémentaires sur les égalités pour s'y ramener.

Exercice Équation Du Second Degré Seconde

Le discriminant est égal à 121 > 0 et √121 = 11. L'équation 2x 2 + 9x − 5 = 0 admet 2 solutions réelles: x 1 = (−9 + 11) / 4 = 1/2 et x 2 = (−9 − 11) / 4 = −5. - Résoudre l'équation: −x 2 + 2x + 3 = 0 Le discriminant est égal à 16 > 0 et √16 = 4 donc l'équation −x 2 + 2x + 3 = 0 admet 2 solutions réelles: x 1 = (−2 + 4) / −2 = −1 et x 2 = (−2 − 4) / −2 = 3. - Résoudre l'équation: x 2 − 6x − 1 = 0 Le discriminant est égal à 40 > 0 donc l'équation x 2 − 6x − 1 = 0 admet 2 solutions réelles: x 1 = (6 + √(40)) / 2 et x 2 = (6 − √(40)) / 2. Soit à 10 -3 et dans cet ordre 6. 162 et -0. 162. Réduisons grâce à la page racine √(40) = 2√10. Nous pouvons réduire les solutions: x 1 = (6 + 2√10) / 2 = 3 + √10 et x 2 = (6 − 2√10) / 2 = 3 − √10. - Résoudre l'équation: 18x 2 − 15x − 3 = 0 Le discriminant est égal à 441 > 0 et √441 = 21 donc l'équation 18x 2 − 15x − 3 = 0 admet 2 solutions réelles: x 1 = (15 + 21) / 36 = 1 et x 2 = (15 − 21) / 36 = -1/6. L'équation admet comme factorisation: 18(x − 1)(x + 1/6) Factorisation d'un polynôme du second degré L'outil permet de factoriser facilement des polygones du second degré en ligne: par exemple \(3x^2 - 5x + 2\) L'outil détermine en fonction du discriminant du trinôme, le nombre de solutions.
Donc: $$\color{red}{ {\cal S_m}=\emptyset}$$ < PRÉCÉDENT$\quad$SUIVANT >

785cq.vip, 2024